Probing the Nanoscopic Thermodynamic Fingerprint of Paramagnetic Ligands Interacting with Amphiphilic Macromolecules
نویسندگان
چکیده
Self-assembly of macromolecules with ligands is an intricate dynamic process that depends on a wide variety of parameters and forms the basis of many essential biological processes. We elucidate the underlying energetic processes of self-assembly in a model system consisting of amphiphilic core-shell polymers interacting with paramagnetic, amphiphilic ligand molecules from temperature-dependent continuous wave electron paramagnetic resonance (CW EPR) spectroscopy subsequent to spectral simulation. The involved processes as observed from the ligands’ point of view are either based on temperature-dependent association constants (KA,j,k) or dynamic rotational regime interconversion (IC) constants (KIC,j,k). The interconversion process describes a transition from Brownian (b1) towards free (b2) diffusion of ligand. Both processes exhibit non-linear van’t Hoff (lnK vs. T−1) plots in the temperature range of liquid water and we retrieve decisive dynamic information of the system from the energetic fingerprints of ligands on the nanoscale, especially from the temperature-dependent interconversion heat capacity (∆CP,IC).
منابع مشابه
New fingerprint of the entanglement on the thermodynamic properties
The realization that entanglement can affect macroscopic properties of bulk solid-state systems is a challenge in physics and Chemistry. Theoretical physicists often are considered the entanglement between nearest-neighbor (NN) spins and tried to find its characterizations in terms of macroscopic thermodynamics observables as magnetization and specific heat. Here, we focus on the entanglement b...
متن کاملElectronic, optical, thermodynamic parameter, NMR analysis on fullerene interacting with glycine by DFT methods
متن کامل
Variational Calculations for the Relativistic Interacting Fermion System at Finite Temperature: Application to Liquid 3He
In this paper, at first we have formulated the lowest order constrained variational method for the relativistic case of an interacting fermion system at finite temperature. Then we have used this formalism to calculate some thermodynamic properties of liquid in the relativistic regime. The results show that the difference between total energies of relativistic and non-relativistic cases of liqu...
متن کاملNew Tetraaza Schiff Base Ligands and Their Complexes: Synthesis, Characterization and Thermodynamic Studies
Some new symmetrical tetraaza Schiff base ligands containing 2-quinolinecarboxaldehyde moiety formed from condensation reaction of 2-quinolinecarboxaldehyde and o-phenylenediamine derivatives, such as N, Nˊ-bis(2-quinolylmethylidene)-4-methoxy-1, 2-phenylenediimine (L1), N, Nˊ-bis(2-quinolylmethylidene)-4-methy-1, 2-phenylenediimine (L2), N, Nˊ-bis(2-quinolylmethylidene)-4-chloro-1, 2-phenylene...
متن کاملInsights into Protein–Ligand Interactions: Mechanisms, Models, and Methods
Molecular recognition, which is the process of biological macromolecules interacting with each other or various small molecules with a high specificity and affinity to form a specific complex, constitutes the basis of all processes in living organisms. Proteins, an important class of biological macromolecules, realize their functions through binding to themselves or other molecules. A detailed ...
متن کامل